Home Tags Posts tagged with "Big Bang"

Big Bang

La búsqueda continúa. Aún no se han encontrado diferencias entre protones y antiprotones que ayuden a explicar la existencia de la materia en nuestro universo. Se supone que en el Big Bang, la explosión colosal con la que se formó el universo, se generaron cantidades iguales de materia y antimateria. Cuando una y otra entran en contacto, se aniquilan mutuamente, transformando su masa en energía. ¿Por qué entonces el universo está hecho de materia? Sin nada que hubiera inclinado la balanza a favor de la materia, los dos tipos de materia deberían haberse aniquilado entre sí, sin dejar nada en absoluto. En vez de eso, el Big Bang condujo a un universo observable hecho principalmente de materia, con escasas y fugaces apariciones de partículas de antimateria. ¿Hay alguna diferencia sutil entre materia y antimateria, aparte de su signo opuesto, que pueda explicar el enigma?

Unos físicos de la colaboración BASE en el CERN (Organización Europea para la Investigación Nuclear) han conseguido medir las fuerzas magnéticas de los antiprotones con una precisión enorme, 350 veces mayor que la lograda anteriormente. De todos modos, los datos no proporcionan ninguna información sobre cómo se impuso la materia en el universo temprano en vez de que partículas y antipartículas se aniquilasen mutuamente. Lo que sí indican estas mediciones recientes de la colaboración BASE es una gran coincidencia entre protones y antiprotones, confirmando así el Modelo Estándar de la física de partículas. Científicos en todas partes del mundo están usando diversos métodos para intentar hallar de manera inequívoca alguna diferencia crucial. El desequilibrio materia-antimateria en el universo es uno de los temas candentes de la física moderna.

Imagen del experimento BASE en el desacelerador de antiprotones del CERN en Ginebra. (Foto: Stefan Sellner, Fundamental Symmetries Laboratory, RIKEN, Japón)

Imagen del experimento BASE en el desacelerador de antiprotones del CERN en Ginebra. (Foto: Stefan Sellner, Fundamental Symmetries Laboratory, RIKEN, Japón).

Los antiprotones son generados artificialmente en el CERN y los investigadores los almacenan en una cámara especial de aislamiento. Los antiprotones para el experimento actual fueron aislados en 2015 y medidos entre agosto y diciembre de 2016. Este fue el periodo de almacenamiento más largo para antimateria documentado hasta la fecha. Los antiprotones son de forma habitual aniquilados rápidamente cuando entran en contacto con la materia, como el aire. El almacenamiento se efectuó durante 405 días en un vacío que contiene diez veces menos partículas que el espacio interestelar. Se usaron un total de 16 antiprotones y algunos de ellos fueron enfriados hasta casi el Cero Absoluto, unos 273 grados centígrados bajo cero. En la investigación ha participado, entre otras entidades, la Universidad Johannes Gutenberg de Maguncia en Alemania.

Más información https://www.nature.com/nature/journal/v550/n7676/full/nature24048.html

Los resultados de una nueva investigación sugieren que hay agujeros negros, antiquísimos, que jamás fueron estrellas.

La evidencia principal de que esto puede ser así es el extraño perfil de una emisión de radiación, distinto a cualquier otro, y que solo se explicaría por la formación de un agujero negro directamente a partir de gas del entorno, en el universo primigenio, cuando las condiciones reinantes en el cosmos eran muy diferentes de las actuales. Estos raros agujeros negros, catalogados como «de colapso directo», ya fueron predichos por teóricos hace más de un decenio. Ahora parece que hay una evidencia de su existencia.

La nueva investigación es obra del equipo de Aaron Smith y Volker Bromm, de la Universidad de Texas en la ciudad estadounidense de Austin, así como Avi Loeb, del Centro para la Astrofísica (CfA) en Cambridge, Massachusetts, gestionado conjuntamente por la Universidad Harvard y el Instituto Smithsoniano, todas estas entidades en Estados Unidos.

Estos agujeros negros de colapso directo podrían ser la solución a un rompecabezas que ha desconcertado desde hace mucho tiempo a la comunidad científica: ¿cómo se formaron los agujeros negros supermasivos de los primeros tiempos del universo? Hay fuertes evidencias de su existencia, y de hecho son necesarios para energizar los luminosísimos quásares detectados en el universo muy joven (captable en regiones a gran distancia, tantos años atrás en el tiempo como años-luz las separan de la Tierra). Sin embargo, la explicación tradicional de que tales agujeros negros supermasivos y antiquísimos son cadáveres estelares que ganaron masa absorbiéndola poco a poco de su entorno se topa con varios problemas; esencialmente estos indican que tales agujeros no pudieron crecer tanto en tan poco tiempo.

  Imagen basada en una simulación ejecutada por una supercomputadora del entorno cosmológico donde el gas primigenio sufre el colapso directo del que nace un agujero negro. El gas fluye a lo largo de filamentos de materia oscura que forman una red cósmica conectando estructuras en el universo temprano. Las primeras galaxias se formaron en la intersección de estos filamentos de materia oscura. (Imagen: Aaron Smith/TACC/UT-Austin)


Imagen basada en una simulación ejecutada por una supercomputadora del entorno cosmológico donde el gas primigenio sufre el colapso directo del que nace un agujero negro. El gas fluye a lo largo de filamentos de materia oscura que forman una red cósmica conectando estructuras en el universo temprano. Las primeras galaxias se formaron en la intersección de estos filamentos de materia oscura. (Imagen: Aaron Smith/TACC/UT-Austin)

La explicación tradicional de cómo crecen en el corazón de la mayoría de las galaxias en la época actual los agujeros negros supermasivos con millones (y hasta varios miles de millones) de veces la masa del Sol es la que sigue a continuación. Un agujero de este tipo comienza siendo uno de tipo estelar, o sea el cadáver ultradenso que perdura tras la explosión en supernova de una estrella de gran masa. Este agujero negro estelar es, por así decirlo, la semilla de uno supermasivo. Comienza a ganar masa absorbiendo gas de sus alrededores. Si se dan las condiciones oportunas, puede fusionarse con otros agujeros negros semilla.

Esta teoría convencional no explica los agujeros negros supermasivos en quásares extremadamente distantes (y que por tanto ya poseían su colosal masa cuando el universo era aún muy joven). Los quásares pueden resultar visibles para nosotros a pesar de su distancia de miles de millones de años-luz gracias a su increíble brillo. Este resplandor procede de la materia que cae al agujero negro supermasivo. Al acercarse a él, se calienta hasta alcanzar temperaturas de millones de grados, y eso provoca la generación de chorros que brillan como faros a través del universo.

Estas galaxias antiquísimas podrían haber contenido la primera generación de estrellas creadas después del Big Bang. Y aunque entre estas estrellas debió haber bastantes que estallaron en forma de supernova, no parece posible que pudieran actuar como semillas tempranas de quásar, ya que no podía existir el gas necesario alrededor del agujero negro para que este pudiera crecer hasta la masa necesaria. No podía existir todo ese gas ahí porque por fuerza tuvo que ser expulsado por los vientos de las estrellas calientes recién formadas.

Durante décadas, los astrónomos han llamado a este enigma el “problema de la semilla del quásar”.

En 2003, Bromm y Loeb dieron forma a una idea teórica para conseguir que en una galaxia del universo temprano se formase un agujero negro que creciese en masa lo bastante deprisa como para ser supermasivo no mucho tiempo después. Los astrónomos llamaron más tarde a este proceso “colapso directo”.

El proceso de colapso directo empieza con una nube primigenia de hidrógeno y helio, bañada en un mar de radiación ultravioleta. Esta nube se contrae por efecto del campo gravitatorio de un halo de materia oscura. Normalmente, la nube debería poder enfriarse y fragmentarse para formar estrellas. Sin embargo, los fotones ultravioleta mantienen el gas caliente, evitando por tanto la fragmentación y la formación estelar. El gas se va compactando inexorablemente, pero sin fragmentarse, hasta que llega un momento en que el objeto se derrumba sobre sí mismo por su enorme masa, generándose a partir de aquí un agujero negro masivo.

Las condiciones cósmicas para este fenómeno no se dan hoy en día, pero en cambio sí existían en aquel período de tiempo de la historia del universo.

La Tierra llegó temprano a la fiesta de formación de mundos en el universo. Según un nuevo estudio teórico, cuando nuestro sistema solar nació hace 4.600 millones de años, solo existían el 8 por ciento de los planetas potencialmente habitables que se llegarán a formar en el universo. Y la fiesta no se habrá acabado cuando el Sol apague su motor, transcurridos otros 6.000 millones de años. El grueso de esos planetas, el 92 por ciento, aún no han nacido.

Esta conclusión se basa en un examen de los datos recogidos por el Telescopio Espacial Hubble de la NASA y por el observatorio espacial Kepler, un prolífico cazador de planetas.

alien-world-earthlike

La principal motivación de esta investigación realizada por el equipo de Peter Behroozi y Molly Peeples, del Instituto de Ciencia del Telescopio Espacial en Baltimore, Maryland, Estados Unidos, fue comprender el lugar que ocupa la Tierra en el contexto del resto del universo. “Comparada con todos los planetas que se llegarán a formar en el universo, la Tierra es en realidad bastante precoz”. Puede ser también que la aparente inexistencia de civilizaciones en el cosmos aparte de la nuestra se deba a que somos la primera que ha surgido, al menos en esta parte del universo.

Mirando muy lejos y muy atrás en el tiempo, el Telescopio Espacial Hubble ha proporcionado a los astrónomos un “álbum de familia” de observaciones de galaxias que relatan la historia de la formación estelar en el universo a medida que las galaxias crecieron. Los datos muestran que el universo estaba creando estrellas a un ritmo vertiginoso hace 10.000 millones de años, pero la fracción de gas hidrógeno y helio del universo implicada era muy baja. Hoy en día, el nacimiento estelar está produciéndose a una velocidad mucho más lenta que en el pasado lejano, pero queda tanto gas sobrante que el universo continuará cocinando estrellas y planetas durante mucho tiempo aún. Queda suficiente materia forjada por el Big Bang para producir incluso más planetas en el futuro, tanto en la Vía Láctea como más allá.

Científicos Estado Unidenses detectaron ondas gravitacionales que serían la primera evidencia directa de la inflación, el momento de la historia del universo en que en cuestión de segundos pasó de ser un punto diminuto a convertirse en una inmensidad.

La presencia de esas ondas son la “primera evidencia directa de la inflación”, ese momento decisivo en la historia del universo en el que este aumentó explosivamente su tamaño en fracciones de segundo. También serían las “primeras imágenes de las ondas gravitacionales”,  según un comunicado de prensa del Centro de Astrofísica Harvard-Smithsonian (CFA).

De acuerdo con la teoría de la Relatividad de Einstein, aquel cataclismo debió generar ondas gravitacionales, una especie de ondas expansivas cuyos efectos, aunque débiles, aún podrían observarse ahora, 13.800 millones de años después. Los investigadores del experimento BICEP 2, un telescopio de microondas situado en pleno Polo Sur, dicen haber fotografiado esas ondas por primera vez. Estas ondas son “los primeros temblores del Big Bang”, según el CFA.

El descubrimiento ha sido anunciado en la web del BICEP2 e incluye un estudio detallado y esa primera imagen de las ondas gravitacionales llegadas desde el origen del universo. Los rumores de este descubrimiento llevaban circulando desde el viernes y algunos ya se atreven a especular quién ganará el Nobel por ello.

“Detectar esta señal es uno de los logros más importantes en cosmología”, ha dicho John Kovac, investigador del CFA y líder del BICEP2.

aurore-australis-dark-sectoPero en realidad, lo que han hecho los científicos del BICEP2 no es del todo una foto directa de las ondas gravitacionales. Su telescopio está en el Polo Sur porque ese es el lugar de la Tierra más parecido al espacio, sin apenas humedad que distorsione el tipo de “luz” que observa. En lugar de luz visible, lo que observa este espectacular experimento es algo llamado radiación de fondo de microondas. En otras palabras, es el ruido de fondo dejado por el Big Bang en forma de partículas que aún pululan por el universo. Se trata de una radiación débil y constante que, sin embargo, llega a toda la Tierra. De todos los lugares, el Polo Sur, con su extrema sequedad de desierto helado, es el mejor sitio para captar la señal sin apenas alteraciones de la atmósfera.

Lo que los expertos han observado es un cambio en la polarización de esas microondas llegadas desde el origen del universo. La polarización es algo así como la orientación de las partículas que forman las microondas y fue creada justo en el momento del Big Bang. En concreto el equipo ha captado microondas con una determinada orientación, o, como ellos lo llaman, polarización-B. Según sus cálculos, esa polarización sólo puede deberse a que, en su largo camino hasta la Tierra, esas partículas del Big Bang han sido modificadas por las ondas gravitacionales igual que hacen las ondas en la superficie de un estanque cuando alguien tira una piedra. Pero aún hay más, porque, según las observaciones del BICEP2, este tipo de polarización solo pudo ser causada por un tipo concreto de onda gravitacional: una muy débil y muy antigua que se formó como fruto de la inflación que hizo crecer el universo más de 70 órdenes de magnitud en fracciones de segundo.

El material, publicado por el BICEP2 en su web, señala que sus observaciones tienen una fiabilidad de 5 sigmas, es decir, una fiabilidad estadística suficiente como para reclamar un descubrimiento. Esa fiabilidad bastó, por ejemplo, para anunciar el descubrimiento del bosón de Higgs en 2013. Las señales son más intensas justo en el rango en el que los modelos teóricos indican la presencia de ondas gravitacionales. Los responsables de BICEP2 además, señalan que sus observaciones consideran poco probable que los resultados observados se deban a falsos positivos.

Visítanos también en: