Home Tags Posts tagged with "Galaxia"

Galaxia

Un Pequeño Asteroide se Desintegra Sobre África Horas Después de su Descubrimiento.

Un asteroide del tamaño de una roca, designado 2018 LA, fue descubierto el 2 de Junio y se determinó que estaba en curso de colisión con la Tierra, con impacto a solo unas horas de distancia. Debido a que era muy débil – el asteroide tenía solo unos 2 metros de ancho – se estimó, que era lo suficientemente pequeño como para desintegrarse de forma segura en la atmósfera de la Tierra. El asteroide del sábado fue descubierto por Catalina Sky Survey, financiado por la NASA, ubicado cerca de Tucson y operado por la Universidad de Arizona.

Aunque no hubo suficientes datos de seguimiento para hacer predicciones precisas con anticipación, se calculó una franja de posibles ubicaciones que se extiende desde el sur de África, a través del Océano Índico y hacia Nueva Guinea. Los informes de una brillante bola de fuego sobre Botswana, África, a primera hora de la tarde del sábado coinciden con la trayectoria prevista para el asteroide. El asteroide entró en la atmósfera de la Tierra a una velocidad de 17 kilómetros por segundo y se desintegró a varios kilómetros sobre la superficie, creando una bola de fuego brillante.

Cuando se detectó por primera vez, el asteroide estaba casi tan lejos como la órbita de la Luna, aunque inicialmente no se conocía. El asteroide apareció como una veta en la serie de imágenes de exposición temporal tomadas por el telescopio del Catalina Survey. Como es el caso de todos los proyectos de caza de asteroides, los datos fueron enviados rápidamente al Minor Planet Center de la NASA, que calculó una trayectoria preliminar que indica la posibilidad de un impacto en la Tierra. Los datos fueron enviados al Centro de Estudios de Objetos Cercanos a la Tierra (CNEOS) en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California, donde el sistema Scout automático también encontró una alta probabilidad de que el asteroide estuviera en una trayectoria de impacto. Se enviaron alertas automáticas a la comunidad de observadores de asteroides para obtener más observaciones, y a la Oficina de Coordinación de Defensa Planetaria en la Sede de la NASA en Washington. Sin embargo, dado que se determinó que el asteroide era muy pequeño y, por lo tanto, inofensivo, la NASA no emitió más alertas de impacto.

La encuesta de asteroides ATLAS obtuvo dos observaciones adicionales horas antes del impacto, que fueron utilizadas por Scout para confirmar que el impacto ocurriría, y redujo la ubicación prevista al sur de África. Los datos de infrasonido recopilados justo después del impacto detectaron claramente el evento desde una de las estaciones de escucha desplegadas como parte del Sistema de Monitoreo Internacional del Tratado de Prohibición Completa de los Ensayos Nucleares. La señal es consistente con un impacto atmosférico sobre Botswana.

«El descubrimiento del asteroide 2018 LA es solo la tercera vez que se descubre que un asteroide está en una trayectoria de impacto», dijo Paul Chodas, gerente del Centro de Estudios de Objetos Cercanos a la Tierra (CNEOS) en JPL. «También es solo la segunda vez que la alta probabilidad de un impacto se predijo mucho antes del evento en sí».

El primer evento de este tipo fue el impacto del asteroide 2008 TC3, que iluminó el cielo antes del amanecer sobre el norte de Sudán el 7 de octubre de 2008. Ese fue un asteroide un poco más grande (4 metros de tamaño), y fue descubierto 19 horas antes del impacto, lo que permite un gran número de observaciones de seguimiento y una trayectoria muy precisa para calcular. El segundo evento de impacto previsto fue para el asteroide 2014 AA, que se descubrió unas pocas horas antes del impacto el 1 de Enero de 2014 en el Océano Atlántico, dejando muy poco tiempo para las observaciones de seguimiento. El Catalina Sky Survey se ha encargado de descubrir estos tres pequeños asteroides en las trayectorias de impacto, y todo bajo la supervisión del mismo observador, Richard Kowalski.

¡Entérate de mas sucesos escalofriantes!

NOTICIAS INTERNACIONALES.

Un equipo de astrónomos ha encontrado evidencias claras de la presencia de un planeta similar a la Tierra orbitando alrededor de Próxima Centauri, una estrella que se encuentra a 4.2 años luz de la Tierra, lo que la convierte en la más cercana al Sol fuera de este sistema.

Pero uno de los hallazgos que lo hacen todavía más interesante es que, al encontrarse en una zona de habitabilidad, es decir, con condiciones de temperatura que permiten la existencia de agua, es un candidato para buscar vida.

A este mundo, que ha llevado años descubrir, se le ha denominado Próxima b. Su masa es parecida a la del nuestro, gira cada 11 días alrededor de la vecina estrella y sus resultados se dieron a conocer en la revista Nature.

Se trata de una fría enana roja, demasiado débil para observarla a simple vista, aunque vecina de un sistema estelar mucho más brillante y popular: Alfa Centauri, al que seguramente pertenece, explican los investigadores en el artículo científico.

“Dedicamos dos años a diseñar esta campaña (Pale Red Dot), que ha observado Próxima Centauri; es verdaderamente emocionante saber que hay un planeta parecido a la Tierra en torno a la estrella más cercana a nosotros”, dijo Guillem Anglada, el investigador encargado de llevar el estudio desde la Universidad Queen Mary de Londres.

2326553

¿Cómo y qué se logró?

Usando una técnica de búsqueda de exoplanetas conocida como espectroscopía Doppler o de velocidad radial, los investigadores detectaron el ligero tirón gravitatorio que el planeta ejercía sobre su estrella. Éste la obliga a dibujar una pequeña órbita y se traduce en oscilaciones en su luz, que los científicos pudieron medir.

Durante el primer semestre del 2016, Próxima Centauri ha sido observada regularmente con el espectrógrafo HARPS del telescopio de 3.6 metros que tiene el Observatorio Europeo Austral (ESO) en La Silla (Chile), y monitorizada simultáneamente con otros telescopios de todo el mundo. Los datos se han comparado con los que registró el instrumento UVES, también de ESO, en años anteriores.

Pero ¿cómo se busca 
la vida en otros mundos?

Cristina Rodríguez López, investigadora del IAA y coautora del trabajo, ha explicado que lo primero para ver si un planeta tiene vida, como la conocemos, es la presencia de agua a través del vapor de agua en su atmósfera.

Luego, para ver si tiene atmósfera, un primer paso es comprobar que el planeta transite o eclipse su estrella; si esto es así, “analizamos con un espectrógrafo la luz de la estrella mientras el planeta la eclipsa y la composición de su atmósfera”, comentó la investigadora.

 

Fuente: eleconomista.com.mx

Los resultados de una nueva investigación sugieren que hay agujeros negros, antiquísimos, que jamás fueron estrellas.

La evidencia principal de que esto puede ser así es el extraño perfil de una emisión de radiación, distinto a cualquier otro, y que solo se explicaría por la formación de un agujero negro directamente a partir de gas del entorno, en el universo primigenio, cuando las condiciones reinantes en el cosmos eran muy diferentes de las actuales. Estos raros agujeros negros, catalogados como «de colapso directo», ya fueron predichos por teóricos hace más de un decenio. Ahora parece que hay una evidencia de su existencia.

La nueva investigación es obra del equipo de Aaron Smith y Volker Bromm, de la Universidad de Texas en la ciudad estadounidense de Austin, así como Avi Loeb, del Centro para la Astrofísica (CfA) en Cambridge, Massachusetts, gestionado conjuntamente por la Universidad Harvard y el Instituto Smithsoniano, todas estas entidades en Estados Unidos.

Estos agujeros negros de colapso directo podrían ser la solución a un rompecabezas que ha desconcertado desde hace mucho tiempo a la comunidad científica: ¿cómo se formaron los agujeros negros supermasivos de los primeros tiempos del universo? Hay fuertes evidencias de su existencia, y de hecho son necesarios para energizar los luminosísimos quásares detectados en el universo muy joven (captable en regiones a gran distancia, tantos años atrás en el tiempo como años-luz las separan de la Tierra). Sin embargo, la explicación tradicional de que tales agujeros negros supermasivos y antiquísimos son cadáveres estelares que ganaron masa absorbiéndola poco a poco de su entorno se topa con varios problemas; esencialmente estos indican que tales agujeros no pudieron crecer tanto en tan poco tiempo.

  Imagen basada en una simulación ejecutada por una supercomputadora del entorno cosmológico donde el gas primigenio sufre el colapso directo del que nace un agujero negro. El gas fluye a lo largo de filamentos de materia oscura que forman una red cósmica conectando estructuras en el universo temprano. Las primeras galaxias se formaron en la intersección de estos filamentos de materia oscura. (Imagen: Aaron Smith/TACC/UT-Austin)


Imagen basada en una simulación ejecutada por una supercomputadora del entorno cosmológico donde el gas primigenio sufre el colapso directo del que nace un agujero negro. El gas fluye a lo largo de filamentos de materia oscura que forman una red cósmica conectando estructuras en el universo temprano. Las primeras galaxias se formaron en la intersección de estos filamentos de materia oscura. (Imagen: Aaron Smith/TACC/UT-Austin)

La explicación tradicional de cómo crecen en el corazón de la mayoría de las galaxias en la época actual los agujeros negros supermasivos con millones (y hasta varios miles de millones) de veces la masa del Sol es la que sigue a continuación. Un agujero de este tipo comienza siendo uno de tipo estelar, o sea el cadáver ultradenso que perdura tras la explosión en supernova de una estrella de gran masa. Este agujero negro estelar es, por así decirlo, la semilla de uno supermasivo. Comienza a ganar masa absorbiendo gas de sus alrededores. Si se dan las condiciones oportunas, puede fusionarse con otros agujeros negros semilla.

Esta teoría convencional no explica los agujeros negros supermasivos en quásares extremadamente distantes (y que por tanto ya poseían su colosal masa cuando el universo era aún muy joven). Los quásares pueden resultar visibles para nosotros a pesar de su distancia de miles de millones de años-luz gracias a su increíble brillo. Este resplandor procede de la materia que cae al agujero negro supermasivo. Al acercarse a él, se calienta hasta alcanzar temperaturas de millones de grados, y eso provoca la generación de chorros que brillan como faros a través del universo.

Estas galaxias antiquísimas podrían haber contenido la primera generación de estrellas creadas después del Big Bang. Y aunque entre estas estrellas debió haber bastantes que estallaron en forma de supernova, no parece posible que pudieran actuar como semillas tempranas de quásar, ya que no podía existir el gas necesario alrededor del agujero negro para que este pudiera crecer hasta la masa necesaria. No podía existir todo ese gas ahí porque por fuerza tuvo que ser expulsado por los vientos de las estrellas calientes recién formadas.

Durante décadas, los astrónomos han llamado a este enigma el “problema de la semilla del quásar”.

En 2003, Bromm y Loeb dieron forma a una idea teórica para conseguir que en una galaxia del universo temprano se formase un agujero negro que creciese en masa lo bastante deprisa como para ser supermasivo no mucho tiempo después. Los astrónomos llamaron más tarde a este proceso “colapso directo”.

El proceso de colapso directo empieza con una nube primigenia de hidrógeno y helio, bañada en un mar de radiación ultravioleta. Esta nube se contrae por efecto del campo gravitatorio de un halo de materia oscura. Normalmente, la nube debería poder enfriarse y fragmentarse para formar estrellas. Sin embargo, los fotones ultravioleta mantienen el gas caliente, evitando por tanto la fragmentación y la formación estelar. El gas se va compactando inexorablemente, pero sin fragmentarse, hasta que llega un momento en que el objeto se derrumba sobre sí mismo por su enorme masa, generándose a partir de aquí un agujero negro masivo.

Las condiciones cósmicas para este fenómeno no se dan hoy en día, pero en cambio sí existían en aquel período de tiempo de la historia del universo.

0 1510

La misión Planck estudió el firmamento entre los años 2009 y 2013 para analizar la luz más antigua del Universo – la radiación cósmica de fondo. Esta señal está oculta tras las emisiones de la materia difusa presente en nuestra galaxia que, a pesar de ser un estorbo para los estudios cosmológicos, es muy importante para comprender la formación de estrellas y otros procesos de la Vía Láctea.

Los científicos de la Colaboración Planck están estudiando las emisiones polarizadas del polvo interestelar para deducir la estructura del campo magnético de la Vía Láctea, y analizar el papel que jugó el magnetismo en el desarrollo de nuestra galaxia y en el proceso de formación de estrellas.

En esta imagen la escala de color representa la intensidad de la radiación del polvo cósmico, dejando entrever la estructura de las nubes interestelares de nuestra galaxia, y la textura está basada en la dirección de la luz polarizada, lo que a su vez indica la orientación del campo magnético.

Esta ilustración destaca la compleja relación que existe entre el campo magnético y la estructura del medio interestelar a lo largo del plano de la Vía Láctea. En ella se puede ver cómo las líneas de campo están más ordenadas a lo largo del plano galáctico, donde acompañan a la estructura espiral de nuestra galaxia. Por encima y por debajo de este plano se distinguen pequeñas nubes en las que la estructura del campo magnético se vuelve menos regular.

A partir de estas observaciones y de otros estudios similares, los científicos de Planck han descubierto que las nubes filiformes están mayoritariamente alineadas con la dirección del campo magnético local, lo que pone de manifiesto el fuerte papel que ha jugado el magnetismo en la evolución de la galaxia.

Las emisiones del polvo cósmico se determinaron a partir de una serie de observaciones realizadas por Planck a 353, 545 y 857 GHz, y la dirección del campo magnético se derivó de los datos de polarización tomados por Planck a 353 GHz. (Fuente: ESA)

Esta imagen corresponde a una fotografía de Sagittarius B2, una nube enorme, millones de veces el tamaño de nuestro Sol, flotando cerca del centro de nuestra galaxia. Científicos han descubierto que es, básicamente, un enorme río de alcohol. Así es. Sagittarius B2 contiene billones y billones de litros de alcohol y de moléculas de formato de etilo, conocidas por darle a las frambuesas su sabor y olor al ron. No solo suena como el coctel ideal, también podría guardar el secreto de la formación de la vida, ya que es un compuesto orgánico, y descifrar cómo se forma en el espacio revelaría cómo se formó la vida en primera instancia.

Visítanos también en: